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Resumen
Se desarrolló un algoritmo de control difuso de múltiples entradas-múltiples salidas (MIMO) para controlar un cristalizador
continuo no isotérmico. El algoritmo incluye dos lazos de control por retroalimentación y dos desacopladores. El primer
lazo controla la temperatura del cristalizador manipulando el flujo de agua de refrigeración, y el segundo lazo controla
la media de la distribución de tamaño de cristales mediante la manipulación de la velocidad de agitación. Tanto los
controladores como desacopladores difusos fueron entrenados usando información generada a través de simulaciones a
lazo abierto. El algoritmo difuso se comparó contra un sistema MIMO con controladores PID convencionales usando la
medición de la integral del cuadrado del error (ICE) y la integral el valor absoluto del error (IAE) ante cambios en el punto
de ajuste en la temperatura del cristalizador y en la media de la distribución del tamaño de cristal. También se analizaron los
efectos de las perturbaciones provocados por cambios en la temperatura del lı́quido refrigerante. Los controladores fueron
sintonizados minimizando la ICE usando el algoritmo de ajuste de mı́nimos cuadrados no lineales de Matlab (lsqnonlin).
Los resultados mostraron que el algoritmo de control difuso podı́a ser utilizado con éxito para controlar la operación de un
cristalizador continuo no isotérmico.
Palabras clave: control difuso, control MIMO, cristalización, desacopladores difusos, modelado.

Abstract
A fuzzy multiple-input-multiple-output (MIMO) control algorithm was developed and applied to control a non-isothermal
continuous crystallizer. The algorithm included two feedback control loops and two decouplers. The first loop controls
the crystallizer temperature manipulating the cooling water flow rate, and the second loop controls the crystal size
distribution mean manipulating the agitation rate. Fuzzy controllers and decouplers were trained using open loop simulated
information. The fuzzy algorithm was compared to a MIMO conventional PID control system measuring the integral of
square error (ISE) and the integral of the absolute value error (IAE) when temperature and crystal size distribution mean
set points changed. In addition, disturbances caused by changes in the cooling water temperature were analyzed. Fuzzy and
conventional controllers were tuned by minimizing the ISE using the nonlinear least-squares Matlab algorithm (lsqnonlin).
The results showed that the fuzzy control algorithm could be successfully used to control a non-isothermal continuous
crystallizer.
Keywords: crystallization, fuzzy control, fuzzy decoupling, MIMO control, modeling.

1 Introduction

The crystallization process is an old separation
method currently used for obtaining high-value
commodities in batch processes, or large-volume
products in continuous processes. At industrial
level, the main objective of crystallization is to

obtain solid products with a specified quality and
suitable conditions for packaging and storage. These
conditions can be achieved when good control
strategies are applied and control objectives are
attained. Different control strategies have been
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developed for isothermal continuous crystallization
(Lakatos, et al., 2007; Pathath and Kienle, 2003;
Bravi and Chianese, 2003); however, continuous
non-isothermal crystallization has not been widely
analyzed due to lack of precise information concerning
the metastable zone width and kinetic parameters
for nucleation and growth. Quintana et al., (2005)
reported the evaluation of kinetic parameters of
sugar cane and a novel technique for evaluating
the metastable zone with for adipic acid (Quintana
et al., 2016). On the other hand, Quintana et al.,
(2012) developed a nonlinear feedback controller
using geometric control theory for a non-isothermal
crystallizer. They found that interactions among non-
linear parameters introduced a cycling behavior that
easily lead to an unstable operation and the process
was difficult to control when it had an intrinsic
unstable behavior with time-varying parameters. Other
strategy for controlling non-isothermal continuous
crystallizer was reported by Zempoaltécatl (2006). He
used Model Predictive Control with information for
the ammonium sulfate-water system.

On the other hand, fuzzy control algorithms
have been successfully applied to control mechanical
systems (Chebolu, 2004; Shelare, 2004; Gupta,
2005; Thompson and Dexter, 2005; Odetunji and
Kehinde, 2005; Andújar and Bravo, 2005; Park
and Cho, 2005; Kocaarslan et al., 2006). Zhang
and Feng (1997) used fuzzy logic to design
a decentralized adaptive control for large-scale
nonlinear systems; Li and Priemer (1999) and
Shaocheng et al., (2005) controlled a multiple-
input-multiple-output (MIMO) plant. Similarly, Kim
and Oh (2000) utilized fuzzy logic to control
nonlinear and uncertain systems; Lian and Huang
(2001) used fuzzy algorithms for controlling and
decoupling a MIMO plant simultaneously according
to the dynamics system characteristics; and Chen and
Chang (2006) developed a fuzzy diagnosis method to
control systems with coupled loops. Particularly in

crystallization processes, Bravi and Chianese (2003)
developed a neuro-fuzzy controller to control a
continuous cooled mixed-suspension-mixed-product-
removal (MSMPR) potassium sulfate crystallizer. The
control system kept the operation in stable regions
and presented short transient responses. Tututi-Ávila
(2007) applied fuzzy inference to control isothermal
and non-isothermal continuous ammonium sulfate
crystallizers. He reported better performance when
compared to traditional PID controllers but only
in narrow operation ranges due to the interactions
between the control variables. In this work, a
fuzzy control strategy with fuzzy decouplers is
developed to control a non-isothermal ammonium
sulfate crystallizer, and its performance is compared
to conventional PID control systems.

2 Crystallization process model
The crystallization process model includes mass,
energy and population balances. The mass balance
considers the solute concentration in the continuous
phase and accounts for flow of solute into and
out of the system and mass transfer to the solid
phase (nucleation and growth of crystals). In the
same way, the energy balance considers the enthalpy
differences between the flow streams, the heat of
crystallization and heat removal by the cooling system.
The population balance uses the concept of particle
size distribution to include an arbitrary number of
internal coordinates necessary to describe the state of
the particles. The overall model is developed under
the following considerations: continuous operation,
perfect mixing, infinitesimal generated particles and
constant volume. The population balance is reduced
to a five differential equations using the method of
moments and assuming that the dominant dynamic of
the system may be represented by a small number
of degrees of freedom. The complete model is
represented by eqs. (1)-(5).

dM0

dt
=

M0, f eed −M0

τ
+ B (1)

dM j

dt
=

M j, f eed −M j

τ
+ G jM j−1 j = 1, ...,4 (2)

dC
dt

=
(εC) f eedC + M3, f eedC − 3τGM2(ρc −C)

τ(1−M3)
(3)

dT
dt

=
ρ fCp(T f eed −T )− 3∆HcρckvVGM2 −UA(T −Tc)

ρVCp
(4)
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dTc

dt
=
ρwFwCpw(Tc, f eed −Tc) + UA(T −Tc)− (UA)∞(Tc −T∞)

ρwVcCpw
(5)

The nucleation (B) and growth (G) parameters are
calculated on the basis of the solution concentration
and agitation rate. Salcedo-Estrada (2000) evaluated
these parameters into the metastable crystallization
using Eqs. (6)-(7). Table 1 includes the values for
all the involved physical constants and operation
conditions for solving the mathematical model.

B = kbS b
r Mo

t N p
r (6)

G = kgS g
r Nh

r (7)

Eqs. (8)-(9) limit the metastable zone width for
the ammonium sulfate water system. The first one
represents the saturation equation and it was reported
by Perry et al., (1992). The second one represents the
limit of the metastable zone width, and it was reported
by Lugo (2005).

Table 1. Physics constants and operation values.

Parameter Value

b 0.562
g 1.5
h 1.337
kb 180
kg 9.09 × 10−4

kv 0.99
o 0.001
p 0.05

C f eed 0.763
Cp 0.6816

Cpw 1
T f eed 25

Tc, f eed 5
T∞ 29

M43, f eed 170
UA 400

(UA)x 100
V 2230
Vc 820
ε 0.98
ρ 1.244
ρ 1.769
ρ 1
∆Hv −12.0354
τ 2.6

Cs = 4× 10−5T 2 + 2× 10−4T + 0.73 (8)

Cl = 1.3179× 10−7T 3 + 2.6136× 10−6T 2

+ 2.6280× 10−3T + 0.7076 (9)

3 Design of the fuzzy control
system

Fig. 1 presents the proposed fuzzy control scheme.
The fuzzy controller 1 (FC1) controls the crystal size
distribution mean (evaluated as the ratio of moment
4 and moment 3) manipulating the stirring rate, and
fuzzy controller 2 (FC2) controls the crystallizer
temperature manipulating the cooling water flow
rate. The pairing of these variables was made based
on the relative gains array analysis performed by
Tututi-Ávila (2007). The fuzzy decoupler 1 (FD1)
minimizes the interaction between the FC1control
action and temperature; and the fuzzy decoupler 2
(FD2) minimizes the interaction between the FC2
control action and the crystal size distribution mean.

3.1 Design of FC1 and FC2

Fuzzy controllers were developed on a PID fuzzy
structure given by Eq. (10) and shown schematically
in Fig. 2. The error and its derivative constitute the
input variable and the control action represents the
output variable. Three levels for error and its derivative
were considered (negative, zero and positive) and their
combinations generate five possible values for the
output variable (big negative, small negative, zero,
small positive and big positive). These values were
used to build the inference rules. The training routine
ANFIS (Adaptive-Network-based Fuzzy Inference
Systems) of Matlab was used for the fuzzy fit process.
ANFIS routine uses a hybrid learning algorithm to
identify fuzzy inference systems with Sugeno-type
parameters, and it applies a combination of the least-
squares method and the back propagation gradient
descent method.
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Table 2. Design parameters of the fuzzy inference engines of FC1 and FC2.

PARAMETER
FUZZY INFERENCE ENGINE

PD-FC1 and PI-FC1 PD-FC2 and PI-FC2

Type Sugeno Sugeno
And method product product
Or method probor probor
Defuzzyfication method weight average weight average
Aggregate method sum sum
Implication method product product
Inputs (2) e, de/dt e, de/dt
Outputs (1) Nr Fw
Inputs range [-100,100],[-100,100] [-5,5], [-100,100]
Inputs membership e: neg, zero, pos e: neg, zero, pos
Functions labels de/dt: neg, zero, pos de/dt: neg, zero, pos
Outputs membership Nr: bn, sn, z, sp, bp Fw: bn, sn, z, sp, bp
Inputs membership gauss gauss
Functions types It distributes on all range It distributes on all range
Outputs membership constants: constants:
Functions types -100, -50, 0, 50, 100 -2000, -1000, 0, 1000, 2000

Base rules

If pos and pos then bp If pos and pos then bn
If pos and zero then sp If pos and zero then sn

If pos and neg then zero If pos and neg then zero
If zero and pos then sp If zero and pos then sn

If zero and zero then zero If zero and zero then zero
If zero and neg then sn If zero and neg then sp

If neg and pos then zero If neg and pos then zero
If neg and zero then sn If neg and zero then sp
If neg and neg then bn If neg and neg then bp

Ammonium
Sulfate

Crystallizer
Fuzzy Decoupler 2

Fuzzy Decoupler 1

f

N

Fuzzy Controller 2

Fuzzy Controller 1

T

L
sp

sp

w

r

L

T  

 

 

  

 

 

 

 

 

 

43M

 

Fw 

M43
sp 

M43
 

Fig. 1. Proposed control scheme.

u(t) =

∫ {
FKc

2
d [e(t)]

dt
+ FKie(t)

}
+

FKc

2
e(t) + FKd

d [e(t)]
dt

(10)
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PD fuzzy controller

PI fuzzy controller

du/dt u

u

+

d/dt

Kp/2

Kp/2

Kd

K i

Action

control

de/dt

 

 

 

 

e 

FKc/2 

FKc/2 

FKd 

FKi 

control 

action 

Fig. 2. Scheme of the fuzzy controller.

Each fuzzy block in Fig. 2 represents a fuzzy
inference engine. The design parameters required to
run the ANFIS routine for the inference engines are
shown in table 2. The selected ranges for the error and
its derivative go from -100 to 100 except for the error
in the FC2 because the final control element in the
temperature-water flow rate loop has less sensitivity
and only allows ten defined valve stem positions. The
range for the associated error goes from -5 to 5. On the
other hand, the outputs membership functions types
are defined on the basis of the nominal upper and
lower operation values for Fw (10000, 100) and Nr
(600,100). The selected values represent forty percent
of the nominal range Fw (-2000, 2000) and Nr (100, -
100). No differences were found on the final process
control responses when the ranges were Fw (-5000,
5000) and Nr (-250, 250) but larger computational
times. Fig. 3 shows the calculated values for the
manipulated variables as function of the error and its
derivative in the defined output ranges. Big positive
errors in the FC1 are associated with large control
actions as well as big negative errors in the FC2.

3.2 Design of FD1 and FD2

Eqs. (11)-(12) represent the open-loop total derivate
of the controlled variable used for designing the fuzzy
decouplers.

dM43

dt
=

dNr

dt

(
∂M43

∂Nr

)
Fw

+
dFw

dt

(
∂M43

∂Fw

)
Nr

(11)

dT
dt

=
dNr

dt

(
∂T
∂Nr

)
Fw

+
dFw

dt

(
∂T
∂Fw

)
Nr

(12)

In order to keep the desired controlled variables
constant under any change in the manipulated
variables the left hand side of eqs. (11)-(12) has to
be equal to zero, and the decoupling actions may be
evaluated from eqs. (11)-(12). FD1 (Nr-T) loop is
obtained from eq. 11 and FD2 (Fw-M43) from eq. 12.
The decoupling control actions are represented by eqs.
(13)-(14).

dFw

dt
= −1

dNr

dt

(
∂T
∂Nr

)
Fw

(
∂Fw

∂T

)
Nr

(13)

dNr

dt
= −1

dFw

dt

(
∂M43

∂Fw

)
Nr

(
∂Nr

∂M43

)
Fw

(14)
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Table 3. Design characteristics of the fuzzy inference engines for ∂T/∂Nr, ∂Nr/∂M43, ∂Fw/∂T and ∂M43/∂Fw.

Parameter Value

Type Sugeno
And method product
Or method probor

Defuzzyfication method weight average
Aggregate method sum

Implication method product
Inputs 2: Nr, Fw

Outputs 1: Output

Inputs range [100,600],
[100,10000]

Inputs membership functions labels Nr: N1, N2, N3
Fw: f1, f2, f3

Outputs membership functions labels and types Output: O1,. . .,O9
type: all constants

Inputs membership functions types gauss
It distributes on all range

Base rules
If Ni and fi then O3i+ j−3

i = 1,2,3
j = 1,2,3

  

(a) (b) 

 
Fig. 3. Control actions for a) FC1 and b) FC2 as function of error and its derivative.

The derivative terms in eqs. (13)-(14) represent
on-line signals, while the partial derivative terms
represent uncertainties of the plant dynamics. Partial
derivatives were represented by fuzzy structures and
evaluated by open loop simulation using known values
for the manipulated variables. Fig. 4 shows the scheme
used to generate the information needed for the
inference engine. The K weight parameters include the
minus sign of eqs. (13)-(14). A Gaussian type scheme

with three membership function associated with the
input variable and zero order (constant) associated
with the output variable was used to train the fuzzy
decouplers. Table 3 shows the design parameters for
the fuzzy inference engines, and Tables 4-7 show the
obtained simulated values for the partial derivative
terms. Fig. 5 shows the surface response for each
partial derivative term.
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K

weight
parameter

d(x1,manip.)
dt

d(xi,contr.)
d(x1,manip.)

d(xi,contr.)
dt

d(x2,manip.)
d(xi,contr.)

d(x2,manip.)
dt

(x2,manip.)
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d(x1,manip.)
dt
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dt

(x2,manip.)

 

 

  

 

 

rdN

dt

 

wdF

dt
 

r

T

N
 

 

T

t

 

T

t

 

wF

T
 

wF

t

 
wF  

 

 
rN  

43

w

M

F

 
43M

t

 

43

rN

M

 rN

t
 

Fig. 4. Scheme of fuzzy decouplers.

  

a) b) 

 

 

c) d) 

 
Fig. 5. Control fit surfaces of partial derivatives: a) (∂T/∂Nr)Fw = DT DN, b) (∂Fw/∂T )Nr = DFDT , c)
(∂M43/∂Fw)Nr = DMDF and d) (∂Nr/∂M43)Fw = DNDM.

4 Design of the conventional PID
control system

Tututi-Ávila (2007) developed a conventional PID
system (CC1 for the M43-Nr loop and CC2 for the
T-Fw loop) for controlling the operation of a non
isothermal crystallizer. He used the crystallization

model previously described to adjusted process
reaction curves to a first order plus dead time
models for each control loop and second order
models for decouplers. Eqs. (15)-(16) show the
relationship between the controlled variables and
manipulated variables, and eqs. (17)-(18) show the
transfer functions for decouplers.
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GM43,Nr (s) =
0.2285e−1.117s

3.6246s + 1
(15)

GT,Fr (s) =
−7.5982× 10−4e−0.5716s

1.805s + 1
(16)

DM43,Fw = −0.1099
(

4.8841s2 + 4.42s + 1
13.235s2 + 7.276s + 1

)
(17)

DT,Nr = 0.3177
(

1.2746s2 + 2.258s + 1
0.1105s2 + 0.645s + 1

)
(18)

Table 4. Simulated partial derivatives values (∂T/∂Nr)Fw for known Fw and Nr values.

Nr, rpm

Fw, (ml/min) 105 355 595
100 3.40 × 10−4 1.40 × 10−4 1.02 × 10−4

5000 5.94 × 10−4 1.83 × 10−4 3.52 × 10−2

10000 6.18 × 10−4 2.25 × 10−4 5.24 × 10−5

5 Results

The evaluation of the servo control for both fuzzy and
conventional control schemes was made changing the
set point of the controlled variables. The conventional
PID control scheme had the same elements as the
fuzzy control scheme (two control loops and two
control decouplers). Five cases were analyzed in this
work. In the first one, crystal size distribution mean
was changed from 170 µm to 187 µm and crystallizer
operation temperature from 25 ◦C to 23 ◦C. In the
second case, set point changes were broadened (170-
210 µm and 25-21 ◦C). In the third case, crystal
size distribution mean set point was change every 25
minutes (170-187-195-178 µm). In the fourth case,
crystallizer temperature set point was changed every
25 minutes (25-23-22-23 ◦C) and in the fifth case,
disturbance in the cooling water temperature were
introduced at times 25 and 50 minutes (5-15-5 ◦C).

Controllers were tuned (six parameters) at the
same time minimizing the sum of the integral square
errors using the lsqnonlin Matlab algorithm. The
optimization process was performed at the operation
conditions of case 1. The search for optimal values
considered different stating points. Some of these
points did not converge to a stable operation. Upper
and lower search boundaries conditions for the
controller parameters (FKc, FKd and FKi) were

[100, 100, 100] and [-100, -100 -100] respectively.
Termination tolerance was set to 1e−6. Fig. 6a shows
the searching paths for the fuzzy controller parameter
starting at (FKc1 = 1, FKd1= 1, FKi1 = 1, FKc2 =

10, FKd2 = 1 and FKi2 = 1). The optimal values after
40 iterations were FKc1 = 61.5226, FKd1 = -35.5124,
FKi = 43.1570, FKc2 = 19.3028, FKd2 = -6.8370
and FKi2 = 1.5116. The minimizing evaluations of
the integral square errors are shown on figs. (6b)-
(6d). It is important to point out that ISE for FC2
is smaller than FC1 due to the magnitude of the
involved variables. The same optimization process
was done for the conventional PID controllers. Fig.
6c shows the searching paths for the conventional
controller parameter starting at CKc1 = 10, CKd1 =

1, CKi1 = 1, CKc2 = -10, CKd2 = 1 and CKi2 = 1.
The optimal values after 18 iterations were CKc1 =

50.0125, CKd1 = -0.2545, CKi1 = 14.9175, CKc2 =

60.2348, CKd2 = -1.0179 and CKi2 = 1.8247. The
analysis of the five cases used the optimal controller
parameters found with the operation conditions of
case 1. The manipulated variables were limited to
the following intervals: Nr ∈[100, 600] rpm, and
Fw ∈[100, 10000] cm3/min in order to guarantee the
crystallizer operation within the metastable zone. In
addition, simulations were performed using a seeded
inlet stream with crystals of the same size, M43 =128
µm at temperature of 25 ◦C.
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Table 5. Simulated partial derivatives values (∂Fw/∂T )Nr for known Fw and Nr values.

Nr, rpm

Fw, (ml/min) 100 350 600
150 -167.532 -169.780 -170.310
5050 -19370.0 -33.2820 -21075.0
9950 -57300.0 -57372.0 -58295.0

Table 6. Simulated partial derivatives values (∂Nr/∂M43)Fw for known Fw and Nr values.

Nr, rpm

Fw, (ml/min) 105 355 595
100 6.17970 13.0315 26.7158

5000 2.63105 9.30943 21.6452
10000 2.57050 9.26495 21.4052

Table 7. Simulated partial derivatives values (∂M43/∂Fw)Nr for known Fw and Nr values.

Nr, rpm

Fw, (ml/min) 100 350 600
150 3.3560 × 10−2 8.9540 × 10−2 0.10210

5050 4.2774 × 10−4 7.0300 × 10−4 7.5147 × 10−4

9950 1.3152 × 10−4 2.2398 × 10−4 2.2990 × 10−4

Fig. 7 shows the closed-loop dynamic responses
for control and manipulated variables. Set point in
the mean crystal size was changed from 170 to
187 µm and crystallizer temperature changed from
25 ◦C to 23 ◦C. Both control algorithms allowed
the system to reach the set point values in the
analyzed time (25 minutes). The conventional PID
control system increased quickly the cooling water
flow rate in order to increase the supersaturation
and favor crystal growth. This action reduced the
crystallizer temperature and allowed crystals to grow
beyond the established set point value (187 µm). The
overshoot is eliminated reducing the cooling water
flow rate. Besides, the conventional PID controller
initially increased the agitation rate to favor mass
transfer but after few minutes, agitation rate is reduced
to the steady state operation condition. On the other
hand, the fuzzy control system initially increased the
agitation rate to favor mass transfer, but it kept the
cooling water flow rate almost constant.

A comparison of the overall performance of both
control algorithms showed faster responses for the
conventional PID system. Fig. (7c)-(7d) show the
manipulated variables control effort for both types
of controllers. When step changes were introduced,

conventional controllers reacted faster to correct
changes. After 10 minutes, the control effort for both
control schemes was similar. The ISE error for the
conventional system was almost half of the ISE for
the fuzzy control system. The evaluated values for
ISE and IAE are shown on table 8. It is important
to point out that minimizing the ISE, the control
parameters are optimized in such a way that the
closed-loop response reaches the desire value faster
with a minimum overshoot. Fig. 8 shows the closed-
loop dynamic responses when larger set point changes
were introduced to the crystallizer. The mean crystal
size set point changed from 170 µm to 210 µm and
the crystallizer temperature set point changed from 25
◦C to 21 ◦C. Optimal controller parameters previously
found were used for this simulation. Figs. (8a)-(8b)
show that the Fuzzy algorithm reacted faster than the
conventional PID. In fact, the crystallizer temperature
set point was not reached with the conventional PID
controller in 25 minutes. Figs. (8c)-(8d) show the
manipulated variables control effort for both types of
controllers. Again, manipulated elements had larger
control effort at the beginning, specially the agitation
rate for the fuzzy control algorithm.
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Table 8. ISE and IAE values for simulations with fuzzy and conventional PID control algorithms.

ISE IAE

Change FC1 CC1 FC2 CC2 FC1 CC1 FC2 CC2
170-187 mm 459.18 199.96 3.42 1.8 43.23 45.53 4.42 1.9725-23 °C
170-210 mm 2090.37 2403.04 16.82 28.34 119.32 133.57 9.83 24.9225-21 ◦C
170-187-195-178 mm 1174.38 307.71 3.42 2.14 126.76 84.49 4.47 4.7125-23 ◦C
170-187 mm 474.59 188.79 8.5 9.04 66.75 75.92 15.44 16.1125-23-22-23 ◦C
Disturbances 460.78 217.67 3.97 10.88 47.97 59.49 8.67 16.13
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Fig. 7. Dynamic transient response of a) mean (4,3), b) temperature, c) agitation rate and d) cooling water flow rate
with −−− conventional and fuzzy controllers when mean (4,3) set point was increased from 170 to 187 µm
and crystallizer temperature change from 25 ◦C to 23 ◦C.

After 20 minutes, there was no appreciable
difference between them. In this simulation, both ISE
and IAE for the fuzzy system were smaller. It would
seem that the fuzzy algorithm was not as sensitive to
changes in controller parameters as the conventional
algorithm. Fig. 9 shows the closed-loop dynamic
responses obtained for the fuzzy and conventional
PID control algorithms when different set points in
the mean crystal size were introduced at times 0,
25, 50 and 75 minutes. Fig. 9a shows that all set
points were reached before the following set point
was introduced. Fig. 9b shows a very low interaction

between the control loops in the fuzzy system. It would
seem that fuzzy decouplers performance was superior
than conventional decouplers performance. Figs. (9c)-
(9d) show the manipulated variables control effort for
both types of controllers. The conventional system
presented stronger demands than the fuzzy system.
The low interaction between loops kept the cooling
water flow rate almost constant once the crystallizer
temperature steady state value was reached. The ISE
for the fuzzy system was greater because it had a
slower overall reaction.
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Fig. 8. Dynamic transient response of a) mean (4,3), b) temperature, c) agitation rate and d) cooling water flow rate
with −−− conventional and fuzzy controllers when mean (4,3) set point was increased from 170 to 210 µm
and crystallizer temperature change from 25 ◦C to 21 ◦C.
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Fig. 9. Dynamic transient response of a) mean (4,3), b) temperature, c) agitation rate and d) cooling water flow rate
with −−− conventional and fuzzy controllers when different set point in the mean crystal size were introduced
at 0, 25, 50 and 75 minutes.
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The fourth analyzed case was done with changes at
0, 25, 50 and 75 minutes in the crystallizer operation
temperature. Fig. 10 shows the closed-loop dynamic
responses with smaller interaction between loops for
the fuzzy system. The fuzzy algorithm kept the mean
crystal size almost constant with manipulations in
the agitation rate between 180 y 500 rpm. On the
other hand, the changes in the crystallizer temperature
required a stronger control effort for the Fw variable.

In general, the crystallizer temperature set point
changes were adequately controlled for both systems
manipulating agitation rate and cooling flow rate
within the established limits. The IAE´s of the fuzzy
system were smaller than those of the conventional
system. A comparison of the ISE for both systems
showed larger values for FC1 and for CC2. The
fuzzy control system had a better performance for
controlling changes in the crystallizer temperatures.
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Fig. 10. Dynamic transient response of a) mean (4,3), b) temperature, c) agitation rate and d) cooling water flow
rate with − − − conventional and fuzzy controllers when different set point in crystallizer temperature were
introduced at 0, 25, 50 and 75 minutes.

Finally, the effects of disturbances in the inlet
cooling water temperature were analyzed. A change
from 5 ◦C to 15 ◦C was introduced at a time 25
minutes. A second change from 15◦C to 5 ◦C was
introduced at time 50 minutes. Fig. 11 shows small
effects of the disturbance on the mean crystal size
but larger effects on the crystallizer temperature,
especially for the conventional system. When the

cooling water entered at a higher temperature, both
algorithms increased the cooling water flow rate.
Control effort was stronger for the conventional
system due to larger controlled variables deviation.
The ISE for FC1 was larger than CC1 due to the
initial deviation of M43 but all other ISE and IAE were
smaller for the fuzzy system.
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Fig. 11. Dynamic transient response of a) mean (4,3), b) temperature, c) agitation rate and d) cooling water flow rate
with − − − conventional and fuzzy controllers when different cooling water temperature disturbances were
introduced at 0, 25 and 50 minutes.

Conclusions
Both fuzzy and conventional PID control algorithms
can be successfully used to control a non-isothermal
continuous crystallizer. They were able to keep the
crystallizer operation stable and properly react to set
point changes as well as eliminate temperature cooling
disturbances effects. Conventional control systems
had higher performance when used optimal controller
parameters calculated at each specific operation
conditions. Fuzzy control algorithms had a better
performance when simulations were done with larger
set point values. Finally, the fuzzy algorithm could
adequately eliminate the cooling water temperature
disturbance effects.
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Nomenclature
b nucleation equation exponent
e controlled variable error, ◦C, µm

f solution feed flow rate, cm3min−1

g growing equation exponent
h growing equation exponent
j index
kb nucleation rate constant, # crystals

cm−3min−1 g−o rpm−p

kg growing rate constant,
(cm3)g+1minh−1g−grpm−h

kv shape factor
o nucleation equation exponent
p nucleation equation exponent
u control action, cm3 min−1; rpm
B nucleation rate, # crystals cm−3min−1

C solute concentration, gcm−3

Cl meta stable limit concentration, gcm−3

Cs saturation concentration, gcm−3

Cp solution heat capacity, cal g−1 C−1

Cpw water heat capacity, cal g−1 ◦C−1

Fw water cooling flow rate, cm3 min−1

G growing rate, cm min−1

K weight constant
CKc conventional controller proportional gain
CKd conventional controller derivative gain
CKi conventional controller integral gain
FKC fuzzy controller proportional gain
FKd fuzzy controller derivative gain
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FKi fuzzy controller integral gain
M43 crystal size distribution mean (M4/M3), µm
M j j-th crystal size distribution moment,

# crystals cm−3+ j

Mt crystal total mass, g
Nr agitation rate, rpm
Sr relative supersaturation
T solution temperature, ◦C
Tc jacket temperature, ◦C
T∞ environment temperature, ◦C
UA heat transfer rate (crystallizer-jacket),

cal min−1 ◦C−1

UA∞ heat transfer rate (jacket-environment),
cal min−1 ◦C−1

V crystallizer volume, cm3

Vc jacket volume, cm3

Greek symbols

ε solid free fraction
ρ solution density, g cm−3

ρc crystal density, g cm−3

ρw water density, g cm−3

τ residence time, min
∆Hc crystallization enthalphy, cal g−1
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Zhang, T.P., and Feng, C.B. (1997). Decentralized
adaptive fuzzy control for large-scale nonlinear
systems. Fuzzy Sets and Systems 92, 61-70.

678 www.rmiq.org


	Introduction
	Crystallization process model
	Design of the fuzzy control system
	Design of FC1 and FC2
	Design of FD1 and FD2

	Design of the conventional PID control system
	Results

